

Dal Progetto al Cantiere

Certified Quality System since FEBRUARY 1993

ASPER® STRUCTURA

CALCE FIBRORINFORZATA BICOMPONENTE PER RINFORZI STRUTTURALI SU MURATURE DI EDIFICI STORICI O MONUMENTALI

CE approved EN 998-2

Descrizione Prodotto formulato con calce NHL5 - EN 459-1 , microsilici reattive, fibre strutturali, additivazioni multifunzionali, aggregati interattivi.

Vantaggi L'antica reazione calce-pozzolana tramite la razionalizzazione scientifica diviene prodotto industriale innovativo ad alto contenuto tecnologico con elevati valori di energia di deformazione: ASPER® STRUCTURA.

Indicazioni Rinforzo strutturale di murature, soprattutto se di valore storico e monumentale : sarcitura di d'impiego lesioni, rifacimento delle fughe, cappe collaboranti su volte, incamiciature armate con reti di vetro/ zirconio o acciaio.

Metodo d'uso Preparazione del supporto

Asportare tutte le parti incoerenti e/o friabili; scalzare dalle fughe le malte di non sufficiente consistenza. Eliminare ogni residuo polveroso. Lavare ed inumidire abbondantemente il supporto in modo da evitare assorbimento dell'acqua di impasto.

Miscelazione

Versare il componente (B) ADHEWAT® (Kg 4,5-5) nel mescolatore in movimento e poi il sacco (A) ASPER® STRUCTURA (Kg. 25).

Miscelare per circa 3-4 minuti comunque fino ad ottenere un impasto omogeneo.

Applicazione: inumidire abbondantemente la superficie ed applicare manualmente. Per rinforzi strutturali necessaria la monconatura nel supporto, l'applicazione di un primo strato di ASPER® STRUCTURA, il fissaggio della rete di vetro /zirconio (Tecnofib Glass net 510 oppure Tecnofib Glass net 340) o acciaio (Tecnofib ST elt-4/50) e l'immediata applicazione del secondo strato a finire.

Avvertenze I prodotti del sistema ASPER® non contengono sostanze nocive. E' noto, comunque, che i leganti minerali come la calce idrata hanno un effetto alcalino.

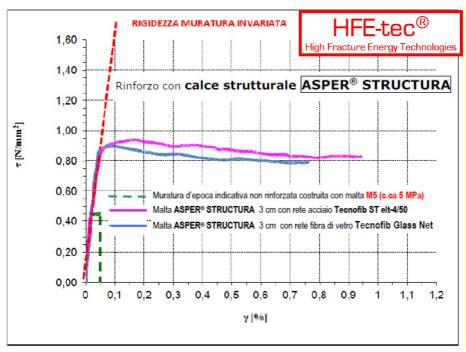
> Stoccaggio: 12 mesi in confezioni originali, non aperte, mantenute in ambiente asciutto e protetto, a temperatura fra +5°C e +35°C.

Non usare il contenuto di sacchi aperti se si nota agglomerazione della polvere.

Confezioni (A): sacco da 25 Kg. su bancale da 1200 Kg.

(B): tanica da 5 Kg o cisternette da 1000 Kg.

Edizione: 02/2014 ASPER® STRUCTURA Data revisione: 07/2014 Nr. rev.: 1 pag. 1/4



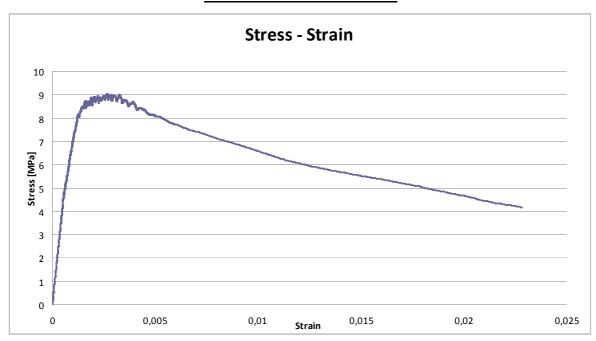
Certified Quality System since FEBRUARY 1993

Dal Progetto al Cantiere

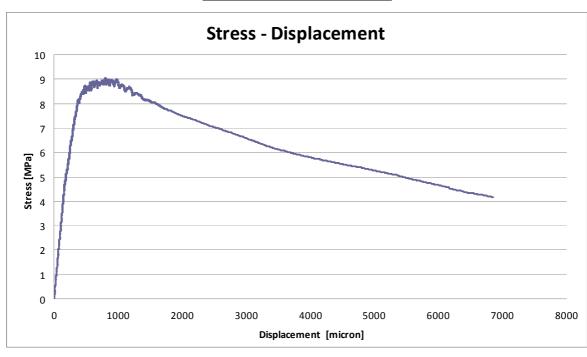
Caratteristiche			
tecniche			ASPER® STRUCTURA
(valori tipici)			SIRUCIUNA
	 Modulo elastico statico 	N/mm ²	6.000
	• Resistenza a compress. (28	gg.) N/mm²	12
	• Resistenza a fless. (28 gg.)	N/mm ²	5
	 Adesione alla pietra 	N/mm ²	> 0,5
	 Adesione al mattone 	N/mm ²	> 0,5
	• Permeabilità al vapore acque	90 μ	20
	• Resa	Kg/mq/mm spess.	1,80
	 Tempo di lavorabilità (20 ℃) 	h	> 2
	 Tempo di inizio presa (20°C) 	h	> 4
	• Temperatura min. di applicaz	ione ℃	+3℃
	Reazione al fuoco		Classe A1
	Colore		Bianco antico

Caratterizzazione Test per compressione diagonale su muratura rinforzata con ASPER® STRUCTURA strutturale armata con rete in fibra di vetro alcali-resistente o rete acciaio.

Edizione: 02/2014 ASPER® STRUCTURA
Data revisione: 07/2014 Nr. rev.: 1 pag. 2/4


ISO 9001 BUREAU VERITAS Certification UVAS MANAGAMENT OOS

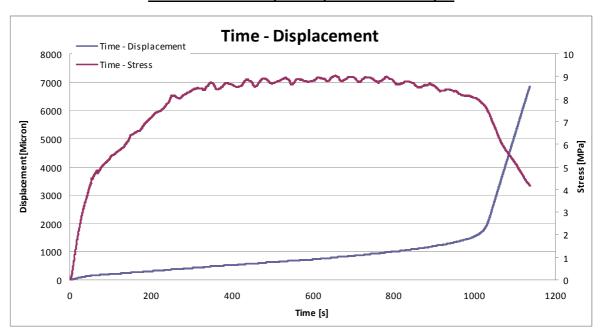
Dal Progetto al Cantiere


Certified Quality System since FEBRUARY 1993

Caratterizzazione Test a compressione in controllo di spostamento su cilindro Φ =150 mm, H= 300 di malta strutturale ASPER[®] STRUCTURA: la prova è finalizzata a quantificare la duttilità a compressione della malta.

Grafico sforzo / deformazione:

Grafico sforzo / spostamento:



Edizione: 02/2014 ASPER® STRUCTURA
Data revisione: 07/2014 Nr. rev.: 1 ASPER® STRUCTURA
pag. 3/4

Certified Quality System since **FEBRUARY 1993**

Grafico sforzo / tempo e spostamento / tempo:

Istruzioni di Leggere attentamente le istruzioni evidenziate sulle confezioni ed eventualmente **sicurezza** richiederci la scheda di sicurezza relativa al prodotto.

I dati sopra indicati sono basati sulle nostre attuali migliori esperienze pratiche e di laboratorio ed ai risultati derivanti dall'applicazione del prodotto nei vari campi possibili. Tecnochem Italiana non si assume alcuna responsabilità su prestazioni inadeguate o negative derivanti da un uso improprio del prodotto o per difetti derivanti da fattori od elementi estranei alla qualità del prodotto incluso l'errata conservazione.

Le caratteristiche tecniche e prestazionali contenute in questa scheda sono aggiornate periodicamente. La data di revisione della presente è indicata nello spazio sottostante.

Edizione: 02/2014

Data revisione: 07/2014

Nr. rev.: 1

ASPER® STRUCTURA
pag. 4/4